The Effect of Radiotherapy on Resin-dentin Bond Strength

YOSHIKAWA Takako1), WATTANAWONGPITAK Nipaporn1,2), TAKAHASHI Hidekazu3) and TAGAMI Junji1)

1)Cariology and Operative Dentistry, Department of Restorative Sciences, Graduate School, Tokyo Medical and Dental University
2)Department of Restorative Dentistry, Faculty of Dentistry, Naresuan University
3)Advanced Biomaterials, Department of Restorative Sciences, Graduate School, Tokyo Medical and Dental University

Abstract: Radiotherapy for oral cancer causes radiation caries. This study evaluated the effect of \(\gamma\) -ray irradiation on resin/dentin bond strength, dentin microhardness and elastic modulus. One group of bovine incisors was irradiated with 60 Gy \(\gamma\) -rays using a cobalt 60 therapeutic machine. The control group of bovine incisors was not irradiated with \(\gamma\) -rays. Flat dentin surfaces were prepared on the labial side. The teeth were treated with the Clearfil SE Bond adhesive system. Clearfil AP-X hybrid composite was built up to \(3 \times 4 \times 3\) mm. The resins were light cured with 600mW/cm\(^2\) for 40s. After storage for 24h, the teeth were sectioned to about 1.0 mm thickness. The slabs were trimmed (ca. 1 mm\(^2\)) at the adhesive-dentin interface for the micro-tensile bond strength test (\(\mu\)-TBS). The trimmed specimens were mounted on a testing apparatus, and stressed to failure under tension at 1 mm/min in an EZ test machine. Nano-indentation hardness and elastic modulus on both dentin surfaces were measured using a nano-indentation tester. \(\mu\)-TBS (n=10), nano hardness (n=20) and elastic modulus data (n=20) were analyzed using Fisher’s PLSD test. There was no significant difference in \(\mu\)-TBS between the intact group and irradiated group (p >0.05). Nano hardness and elastic modulus of the irradiated group were significantly lower than those of the intact group (p <0.05). Irradiation with 60 Gy \(\gamma\) -rays had no effect on resin/dentin bond strength. However, 60 Gy \(\gamma\) -ray irradiation significantly decreased the microhardness and elastic modulus of dentin.

Key words: \(\gamma\) -ray irradiation, Bond strength, Elastic modulus