う蝕象牙質内層に対するレジンの接着

中 島 正 俊

東京医科歯科大学大学院歯学総合研究科 摂食機能保存学講座 う蝕制御学分野

Bonding to Caries-affected Dentin

NAKAJIMA Masatoshi

Cariology and Operative Dentistry, Department of Restorative Sciences, Graduate School of Medical and Dental Sciences,
Tokyo Medical and Dental University

キーワード：う蝕象牙質, 接着システム, 接合界面, 接着強さ

は じ め に

総山ら1)によるう蝕象牙質に関するさまざまな研究により, う蝕象牙質中には性状の異なる 2 つの層, すなわち細菌感染があり, 著しく脱灰・軟化し, 再石灰化不能な知覚のないう蝕象牙質外層 (感染象牙質: caries-infected dentin) と, 中間的に脱灰・軟化しているが細菌感染がなく, 再石灰化が可能なう蝕象牙質内層 (う蝕罹患 (影響) 象牙質: caries-affected dentin) とがあることが示された。これにより, う蝕象牙質外層だけを除去すべきであり, う蝕象牙質内層は保存すべきであるというう蝕処置法が構築された。したがって, 臨床において接着性コンポジットレジン修復を行う際, その被着象牙質となるのは多くの場合う蝕象牙質内層となる。

長年にわたる歯質接着性材料に関する多くの研究の結果, 特に象牙質接着技術は 1990 年以降, 飛躍的な発展を遂げた。しかしながら, これら象牙質接着性に関する研究は, 健全象牙質を用いて行われているものがほとんどであり, う蝕象牙質に対する接着性能に関する論文は少ない。著者は, う蝕象牙質内層のレジンの接着性能は, 健全象牙質と比べ低く, 形成される樹脂合層は厚く脆弱であることを報告してきた2-10）。本稿では, う蝕象牙質内層に対するレジンの接着強さとその接合界面の特徴について, これまで行ってきた研究結果を概説するとともに, その接着性能を改良する方策について解説したい。
う歯象牙質内層に対するレジンの接着強さと
接合界面（セルフエッチングシステム）

著者らの研究結果では、セルフエッチ接着システムにおける歯象牙質内層に対する接着強さが低下する割合は、エッチ＆リンス接着システムより大きかった。その原因について、象牙質切削面に形成されるスミーヤー層の構造の違いに着目し、スミーヤー層は被切削体と構造的連続性のないものの、その構成成分は同じである。したがって、う歯象牙質内層スミーヤー層に有機成分の割合は、健全象牙質スミーヤー層の場合は並べて増加している。

図1 3ステップ・エッチ＆リンス接着システム（オールボンド2）の象牙質接着界面の
走査電子顕微鏡像

A：健全象牙質，B：う歯象牙質内層（R：ボンディング層，H：樹脂合合層，D：象牙質）。う歯象牙質内層の樹脂合合層は薄く、隙間している。

図2 各種処理後における健全象牙質およびう歯象牙質
内層に対する2ステップ・セルフエッチ接着システム（クリアフィルメガボンドFA）の接着強さ

著者らは、還元効果のある芳香族スルフィン酸塩を主成分としたアクセル（サンメディカル）を用いたところ、NaOCl水溶液30秒処理により低下した健全象牙質に対するクリアフィルメガボンドFAの接着強さは回復した。一方、NaOCl水溶液30秒処理では有機成分の変化がなかったう歯象牙質内層は、アクセル15秒処理では効果が認められなかったが、30秒では接着強さが向上した。

表9 う歯象牙質内層に対するセルフエッチ接着システムの接着性能

おわりに

う歯象牙質内層へのセルフエッチ接着システムの接着性能は、スミーヤー層表面の有機成分を除去することにより向上することが示唆されたが、その除去方法についてはまだ改善の余地を残している。さらに、その接着耐久性については今後の検討を含めなければならない課題である。
あると考えている。

文 献

1) 鎌山孝雄、細田裕美、和久本吉雄、岩永正明：新保存修復術—ウ歯治歯学の補洞周便；クインテッセンス出版、東京、15－47，1985。
10) 中島正俊、谷口 玄、Sittikorn Kunawarote, 保坂啓一, 高橋真広, 岩本奈々子, 岸川隆史, 田上順次：塗布変更による2ステップ・セルフエッチ接着システムの接着性能の改良：日本歯科学 51, 396－402, 2008.