エナメル質切削時における微小亀裂発生の解析

三橋 晃 下出 真道
平田 哲也* 石井 信之

神奈川歯科大学大学院歯学研究科 歯齲生物学講座
*平田歯科医院

抄録
目的：近年、歯科用マイクロスコープの使用によって、エナメル質や象牙質に多数の微小亀裂が存在することが明らかになっている。微小亀裂は窩洞形成、咬合性外傷、外傷および加齢などによってエナメル質や象牙質に発生し、細菌侵入経路となると同時に歯齲炎の原因になることが指摘されている。また、窩洞形成時に生じたエナメル質の微小亀裂は、修復処置後の術後疼痛、修復物脱落、二次齲蝕および歯の破折要因になる可能性が示されている。本研究は、cracked tooth syndrome の原因、予防および対策を検討することを目的として種々の切削器具で窩洞形成を行い、エナメル質に発生する微小亀裂を解析した。

材料および方法：水中保管のヒト抜去天然歯エナメル質唇側面に窩洞形成し、形成後のエナメル質の微小亀裂を観察した。パーソル素材・形態が微小亀裂発生に与える影響を評価するために、窩洞形成には、4 種類の切削機器（エアータービン、マイクロモーター、レーザー、超高音波）と 2 種類の素材（ダイヤモンド、カーバイド）、2 種類の形態（フィッシャーバー、ラウンドバー）の切削器具を用いておのおのの組み合わせ、比較検討した。

窩洞形成に使用したパーおよびチップは、ダイヤモンドフィッシャー、ダイヤモンドラウンド、カーバイドラウンド、カーバイドフィッシャー、レーザーチップを各切断機器に合わせて選択し供試した。各窩洞周囲の微小亀裂の有無は、走査型共焦点レーザー顕微鏡（Olympus）にて観察し、発生頻度および形態を解析した。

結論：回転切削器具と超高音波機器によって形成された窩洞周囲エナメル質付微小亀裂の発生を認めたが、レーザー機器による切削では認められなかった。ダイヤモンドフィッシャーバーを用いた窩洞形成では、ダイヤモンドラウンドバーよりも微小亀裂を生じにくい傾向を示し、この傾向はカーバイドバーでも同様にみられた。

考察および結論：窩洞形成に使用する切削器具により、窩洞周囲エナメル質に微小亀裂が発生することで歯齲炎や歯の破折を引き起こす可能性が示された。本研究結果から、切削効力を考慮する必要があるが、レーザーチップ+レーザーによる切削と、回転切削器具においてはマイクロモーター＋ダイヤモンドフィッシャーバーの切削が、微小亀裂の発生を抑制することが示された。

キーワード：微小亀裂、窩洞形成、エナメル質